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Abstract
To describe the interaction of molecular vibrations with electrons at a quantum dot contacted to
metallic leads, we extend an analytical approach that we previously developed for the
many-polaron problem. Our scheme is based on an incomplete variational Lang–Firsov
transformation, combined with a perturbative calculation of the electron–phonon self-energy in
the framework of generalized Matsubara functions. This allows us to describe the system at
weak-to-strong coupling and intermediate-to-large phonon frequencies. We present results for
the quantum dot spectral function and for the kinetic coefficient that characterizes the electron
transport through the dot. With these results we critically examine the strengths and limitations
of our approach, and discuss the properties of the molecular quantum dot in the context of
polaron physics. We place particular emphasis on the importance of corrections to the concept
of an anti-adiabatic dot polaron suggested by the complete Lang–Firsov transformation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent advances in nanotechnology have stimulated great
interest in the basic mechanisms of transport through molecular
junctions (Chen et al 1990, Park et al 2002, Reichert et al 2002,
Kubatkin et al 2003, Park 2007, Cuniberti et al 2005). In such
devices the central element can be a single organic molecule
or a suspended carbon nanotube, which may be thought of as a
quantum dot contacted to metallic leads that act as macroscopic
charge reservoirs. Transport through such a quantum dot is
determined by energy level quantization as well as electronic
correlations and electron–phonon (EP) interaction (Alexandrov
and Bratkovsky 2003, Mitra et al 2004, Takei et al 2005,
Galperin et al 2007, Fehske et al 2008).

Vibrations of a molecular quantum dot are local
excitations of substantial energy, which are represented by
optical phonons. Their frequency is comparable to the transfer
integral or kinetic energy of electrons (Nuñez Regueiro et al
2007). Therefore, the mobility of electrons is significantly
modified by the influence of molecular vibrations. In this
respect, a molecular quantum dot resembles the situation in
a crystalline structure, where the coupling between vibrations

and electrons may lead to the formation of (small) polarons,
as studied in the context of Holstein’s molecular crystal model
(Holstein 1959a, 1959b). A Holstein polaron is an electron
dressed by a phonon cloud. Since the polaron must carry the
accompanying deformation through the lattice, the mobility
of Holstein polarons can be renormalized by several orders
of magnitude in comparison to the free electronic excitation
(Lang and Firsov 1962, Wellein and Fehske 1998). While
the physics of Holstein polarons in a perfect crystal at low
temperature and small density is by now well understood
(see e.g. the review Fehske and Trugman 2007), there is less
understanding if the periodicity of the crystal is altered, e.g. by
impurities (Mishchenko et al 2009, Alvermann and Fehske
2008) or disorder (Bronold and Fehske 2002, Bronold et al
2004), in anisotropic materials (Alvermann et al 2008, Emin
1986), or is absent for complicated geometries.

For a molecular quantum dot, translational symmetry is
broken from the outset, and EP coupling is relevant only in a
small part of the entire system. The electron current through a
deformable quantum dot was found to depend significantly on
the local EP coupling (Flensberg 2003, Nuñez Regueiro et al
2007, Zazunov and Martin 2007, Mitra et al 2004, Takei et al
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2005, Hohenadler and Fehske 2007). In order to understand
the basic transport mechanisms in such devices, appropriate
theoretical models have to be studied. The most simple model
corresponds to a modified Fano–Anderson model, where a
vibrating quantum dot replaces the static impurity. Then the
current is determined by the dot spectral function (Meir and
Wingreen 1992). The spectral function accounts for the leads,
as well as for the influence of EP coupling. In particular,
it determines the charge carrier population of the dot, and
its value close to the Fermi energy of the leads determines
the number of electrons contributing to the current. Since,
with increasing EP interaction, spectral weight is transferred
to lower energies, the charge carrier population of the dot
increases. For the current, on the other hand, a reduction
is expected since the spectral weight at the Fermi energy
decreases.

In the present manuscript we will address electron trans-
port through a deformable molecule within an approximate
description, which we previously developed for Holstein
polarons at finite density (Loos et al 2006b, 2006a, 2007).
It accounts for renormalization of transport and inelastic
processes, and Pauli blocking. Higher order many-particle
processes, namely the further excitation of electron–hole pairs
and subsequent evolution of many-particle correlations, are
not included. The current presentation, therefore, should be
considered as an important but intermediate step towards a
complete description. A particular feature of our approach is
that it interpolates between weak and strong coupling using
an incomplete variational Lang–Firsov transformation. As
a consequence it describes polaronic effects without being
restricted to the anti-adiabatic strong coupling regime. We
introduce our approach here for the current in linear response,
where the kinetic coefficient is obtained from the dot spectral
function at equilibrium. Subsequent work will address the
current at finite voltage bias.

The paper is organized as follows. In section 2.1 we
introduce the model Hamiltonian, and describe the variational
Lang–Firsov transformation. In section 2.2 we derive the
expressions and the iterative calculation scheme for the self-
energy, which depends on the variational parameter of the
incomplete Lang–Firsov transformation. This parameter is
obtained from minimization of the energy, which we express
as the expectation value of the Hamiltonian within the
approximation used. From the spectral function, the kinetic
coefficient is obtained in section 2.4. Section 3 discusses the
numerical results, and we conclude in section 4.

2. Theoretical approach

2.1. Model

The paradigmatic example of a vibrating quantum dot is
provided by a molecule sandwiched between two metallic
leads (see figure 1). Such a system can be described by the
Hamiltonian

H =
∑

k,a

(Eka − μa)c
†
kacka − td√

N

∑

k,a

(d†cka + c†
kad)

+ (� − μ)d†d − gω0(b
† + b)d†d + ω0b†b. (1)

Figure 1. Sketch of a molecular quantum dot with vibrational
frequency ω0 between two metallic leads.

Here, the Eka (for k = 1, . . . , N) give the energies of non-
interacting electrons in the left and right lead a = l, r, and
c†

ka (cka ) are the corresponding creation (destruction) operators
of free fermions in the N lead states. The leads will later be
specified by their density of states �(ξ) = 1

N

∑
k δ[ξ − Ek];

the population of the leads is determined by the chemical
potentials μa. The quantum dot is represented by a single
energy level �, with Fermi operators d (†) and the chemical
potential μ = (μl + μr)/2. The term ∝ td allows for lead–
dot particle transfer; a possible k-dependence of the dot–lead
coupling can be absorbed in �(ξ). An electron at the quantum
dot interacts via a Holstein-type coupling with a local (intra-
molecular) vibrational mode; g denotes the dimensionless EP
coupling constant, and ω0 the frequency of the optical phonons
created (annihilated) by b† (b).

The quantum dot responds to the presence of an electron
with a finite deformation. For sufficiently large phonon
frequency ω0, the strength of the deformation depends only
on the momentary occupancy of the dot. This is in analogy to
Holstein’s small polaron theory, where a lattice deformation in
the vicinity of the electron accompanies the electron motion.
To describe this effect, we apply a generalized Lang–Firsov
displacement transformation (Lang and Firsov 1962) with
parameter γ ∈ [0, 1],

U = eg̃(b†−b)d†d , for g̃ = γ g. (2)

After this transformation, the original electron and phonon
operators are given as

d̃ = eg̃(b†−b)d, b̃ = b + g̃d†d. (3)

The transformed Hamiltonian H̃ = U † HU reads

H̃ =
∑

k,a

(Eka − μa)c
†
kacka −

∑

k,a

(Ct d
†cka + C†

t c†
kad)

+ (�̃ − μ)d†d − Cd d†d + ω0b†b, (4)

where

Ct = 1√
N

td e−g̃(b†−b), Cd = gω0(1 − γ )(b† + b), (5)

and

�̃ = � − εpγ (2 − γ ), with εp = g2ω0. (6)

As the parameter γ of the Lang–Firsov transformation grows
from γ = 0 to 1 it accounts for the transition between the
weak coupling and strong coupling regimes. The value of γ
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will be later determined from minimization of the energy. Only
for very strong coupling and large phonon frequency, the value
γ = 1 is approached. Then, the canonical transformation (2)
eliminates the direct coupling term between the new fermion
and shifted boson operators at the price of introducing a boson
modified transfer term between quantum dot and leads. This
corresponds to the strong coupling limit of polaron theory,
where the new Fermi operators d would represent small
polarons in the deformable lattice. For our problem, ‘polaron
formation’ at the quantum dot mainly results in lowering of the
dot energy level by the polaron shift εp, and in an exponential
reduction of the effective dot–lead transfer t̃d = td e−g̃2/2. Note
that the variation of γ throughout the parameter regime is
important to describe the system away from the strong coupling
limit. The use of the γ -dependent variational Lang–Firsov
transformation is an essential feature of our description.

2.2. Single-particle properties: quantum dot spectral function

We first determine the retarded Green function GR
dd of the

quantum dot, which is represented by the operators d (†)

in the transformed Hamiltonian (4). The Green function
is calculated within perturbation theory up to second order
in the interaction coefficients (5), starting from the Lang–
Firsov transformed Hamiltonian (4). Since the parameter γ

is assigned variationally, this treatment exceeds standard weak
coupling or strong coupling perturbation theory, which starts
either from the untransformed Hamiltonian (corresponding to
γ = 0) or the fully transformed Hamiltonian (γ = 1).
The combination of perturbation theory with an incomplete
variational Lang–Firsov transformation provides meaningful
results also away from these limiting cases.

Our calculation is based on the equations of motion for the
generalized temperature Green functions (Kadanoff and Baym
1962), adapted to systems with EP interaction (Bruevich and
Tyablikov 1962, Schnakenberg 1966). Accordingly we define

Gdd(τ1, τ2; {V }) = − 1

〈S〉 〈Tτ d(τ1)d
†(τ2)S〉, (7)

and in an analogous way Gcd; ka , Gdc; ka , and Gcc; ka . The mean
value and (imaginary) time dependencies in (7) are determined
by H̃ with μ = μl = μr, the equilibrium chemical potential of
the system. Moreover we set

S = Tτ exp

{
−

∫ β

0
dτVt(τ )Ct (τ ) + V̄t (τ )C†

t (τ )

+ Vd(τ )Cd(τ )

}
, (8)

where β is the inverse temperature, and the classical variables
Vt , V̄t , and Vd are introduced as a purely formal device.

We set up the equations of motion for the Green functions
using the following matrix notation
∫ β

0
dτ ′ G1(τ1, τ

′; {V })G2(τ
′, τ2; {V })

≡ G1(τ1, τ
′; {V }) ◦ G2(τ

′, τ2; {V }). (9)

If G1, G2 satisfy the relation

G1(τ1, τ
′; {V }) ◦ G2(τ

′, τ2; {V }) = δ[τ1 − τ2], (10)

they are called inverse functions of each other. In particular,
the inverse functions to the zeroth order Green functions
G(0)

dd (τ1, τ2) and G(0)

cc; ka(τ1, τ2) are given as

G(0)−1
dd (τ1, τ2) =

[
− ∂

∂τ1
− (�̃ − μ)

]
δ[τ1 − τ2] (11)

and

G(0)−1
cc; ka(τ1, τ2) =

[
− ∂

∂τ1
− (Eka − μ)

]
δ[τ1 − τ2], (12)

respectively. By functional derivation with respect to the
auxiliary fields {V } we find a set of coupled equations,

G(0)−1
dd (τ1, τ

′) ◦ Gdd(τ
′, τ2; {V }) = δ[τ1 − τ2]

− C̄d(τ1, {V })Gdd(τ1, τ2; {V })
+ δ

δVd(τ1)
Gdd(τ1, τ2; {V })

−
∑

k,a

C̄t(τ1, {V })Gcd; ka(τ1, τ2; {V })

+
∑

k,a

δ

δVt (τ1)
Gcd; ka(τ1, τ2; {V }), (13)

G(0)−1
cc; ka(τ1, τ

′) ◦ Gcd; ka(τ
′, τ2; {V })

= −C̄†
t (τ1, {V })Gdd(τ1, τ2; {V })

+ δ

δV̄t (τ1)
Gdd(τ1, τ2; {V }), (14)

with C̄d(τ, {V }) = 1
〈S〉 〈Tτ Cd(τ )S〉, C̄t (τ, {V }) = 1

〈S〉 〈Tτ

Ct (τ )S〉, and C̄†
t (τ, {V }) = 1

〈S〉 〈Tτ C†
t (τ )S〉.

In order to solve this system of equations, we multiply (14)
by G(0)

cc; ka from the left and substitute the resulting expression

for Gcd; ka in (13). Then equation (13) is multiplied by G−1
dd

from the right. The resulting equation for Gdd is converted to
an equation for the self-energy �dd , introduced by

G−1
dd (τ1, τ2; {V }) = G(0)−1

dd (τ1, τ2) − �dd(τ1, τ2; {V }). (15)

By use of the functional differentiation rules

δG ◦ G−1 = −G ◦ δG−1 = G ◦ δ�,

δG = G ◦ δ� ◦ G,
(16)

the self-energy � becomes

�dd(τ1, τ2; {V }) = −C̄d(τ1; {V })δ[τ1 − τ2]
+

∑

k,a

C̄t(τ1; {V })G(0)

cc; ka(τ1, τ2)C̄
†
t (τ2; {V })

−
∑

k,a

G(0)

cc; ka(τ1, τ2)
δC̄†

t (τ2; {V })
δVt (τ1)

+ Gdd(τ1, τ
′; {V }) ◦ δ�dd(τ

′, τ2; {V })
δVd(τ1)

−
∑

k,a

C̄t(τ1; {V })G(0)

cc; ka(τ1, τ
′′)

◦ Gdd(τ
′′, τ ′; {V }) ◦ δ�dd (τ ′, τ2; {V })

δV̄t(τ ′′)

3
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−
∑

k,a

G(0)

cc; ka(τ1, τ
′′)C̄†

t (τ ′′; {V })

◦ Gdd(τ
′′, τ ′; {V }) ◦ δ�dd (τ ′, τ2; {V })

δVt (τ1)

+ terms with products of functional derivatives of �dd

+ terms with second functional derivatives of �dd . (17)

Within our iterative scheme, the terms on the rhs of
equation (17) without functional derivatives of �dd are taken
in the first step as �

(1)
dd (τ1, τ2; {V }). Explicitly, we have

�
(1)

dd (τ1, τ2; {V }) = −C̄d(τ1; {V })δ[τ1 − τ2]
+

∑

k,a

C̄t(τ1; {V })G(0)

cc; ka(τ1, τ2)C̄
†
t (τ2; {V })

+
∑

k,a

G(0)

cc; ka(τ1, τ2)

[
1

〈S〉 〈Tτ Ct (τ1)C
†
t (τ2)S〉

− C̄t (τ1; {V })C̄†
t (τ2; {V })

]
. (18)

In the second step, to obtain �
(2)
dd , the first approximation �

(1)
dd

has to be inserted into the functional derivatives of �dd on the
rhs of (17). But, if we confine ourselves to terms up to second
order in the interaction coefficients, only the first four terms
on the rhs are relevant. In this approximation, the self-energy
�dd(τ1, τ2) = �dd(τ1, τ2; {0}), determining the temperature
Green function Gdd(τ1, τ2) = Gdd(τ1, τ2; {0}), is given as

�dd(τ1, τ2) = �
(1)
dd (τ1, τ2; {0})

+ Gdd(τ1, τ2)〈Tτ Cd(τ1)Cd(τ2)〉, (19)

where C̄d(τ ; {0}) = 0 and C̄t (τ ; {0}) = [C̄†
t (τ ; {0})]∗ =

1√
N

td exp{− 1
2 g̃2 coth( 1

2βω0)}. The correlation functions of the
interaction coefficients occurring in (19) have been calculated
previously for the generalized Lang–Firsov transformation in
the Holstein model (Fehske et al 1997). Converting (19) to
the equation for the Fourier transform of the self-energy and
expressing the Fourier transform of Gdd , Gdd(iων), by means
of the spectral function Add , the summation over the bosonic
Matsubara frequencies ωn = 2nπ/β (being the difference of
two fermionic Matsubara frequencies) can be carried out, and
we obtain, within low-temperature approximation βω0 � 1,

�dd(iων) = 1

N
t2
d e−g̃2

∑

k,a

1

iων − (Eka − μ)

+
∑

s�1

e−g̃2 (g̃2)s

s!
1

N
t2
d

∑

k,a

(
nF(Eka − μ)

iων − (Eka − μ) + sω0

+ 1 − nF(Eka − μ)

iων − (Eka − μ) − sω0

)

+ [(1 − γ )gω0]2
∫ +∞

−∞
dω′ Add(ω

′)

×
(

nF(ω
′)

iων − ω′ + ω0
+ 1 − nF(ω

′)
iων − ω′ − ω0

)
, (20)

with the fermionic Matsubara frequencies ων = (2ν + 1)π/β

and the Fermi function nF = (eβω + 1)−1. Analytical
continuation iων → ω̄ = ω + iδ in the upper complex half-
plane then gives the retarded Green function

GR
dd(ω̄) = 1

ω̄ − (�̃ − μ) − �dd(ω̄)
(21)

and the related spectral function

Add(ω) = − 1

π
Im GR

dd(ω + i0+). (22)

The rhs of equation (22) is determined by the real and
imaginary parts of �dd (ω + i0+), which we obtain from (20)
employing 1

x+i0+ = P 1
x − iπδ(x). Moreover, we transform

the k-summation into an integration over the band energy ξ of
the leads, ξ ∈ [−W, W ], using the lead density of states �(ξ).
Assuming further the right and the left leads to be identical
the summation over a gives simply a factor 2. In the end, we
work in the limit T → 0, when the Fermi function becomes
the Heaviside function, nF (ω) = �(−ω), and obtain

Im �dd(ω) = −2π t2
d e−g̃2

�(ω + μ)

∫ W

−W
dξ δ[ω − (ξ − μ)]

− 2π t2
d e−g̃2

∑

s�1

(g̃2)s

s!
{
�(ω + μ + sω0)

×
∫ μ

−W
dξ δ[ω − (ξ − μ) + sω0]

+ �(ω + μ − sω0)

∫ W

μ

dξ δ[ω − (ξ − μ) − sω0]
}

− π[(1 − γ )gω0]2{Add(ω + ω0)�(−ω − ω0)

+ Add(ω − ω0)�(ω − ω0)}, (23)

Re �dd(ω) = 2 t2
d e−g̃2P

∫ W

−W
dξ �(ξ)

1

ω − (ξ − μ)

× 2t2
d e−g̃2

∑

s�1

(g̃2)s

s! P
{∫ μ

−W
dξ �(ξ)

1

ω − (ξ − μ) + sω0

+
∫ W

μ

dξ �(ξ)
1

ω − (ξ − μ) − sω0

}

+ [(1 − γ )gω0]2

{
P

∫ 0

−∞
dω′ Add(ω

′)
ω + ω0 − ω′

+ P
∫ ∞

0
dω′ Add(ω

′)
ω − ω0 − ω′

}
. (24)

Note that in accordance with our second order approach, the
spectral functions Add(ω) occurring in (23) and (24) have to
be determined by equations (21) and (22), using �

(1)
dd (ω+ i0+)

for the self-energy.
For g = 0, we are faced with the well-known problem of

electron localization at an impurity. Then, if a solution ω̃ of

ω̃ = � + Re �dd (ω̃ − μ) (25)

exists outside the interval [−W, W ], the spectral function
Add(ω) exhibits a single-peak structure,

Add(ω) = z(ω̃)δ[ω − (ω̃ − μ)], (26)

reflecting electron localization at the quantum dot. Here,

z(ω̃)−1 =
∣∣∣∣1 + 2 t2

d P
∫ W

−W
dξ �(ξ)

1

(ω̃ − ξ)2

∣∣∣∣. (27)

According to the first term on the rhs of (23), we find
Im �dd (ω) �= 0 for ω ∈ [−W − μ, W − μ], leading to an
incoherent single-particle spectrum in this interval.

4
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Figure 2. Shaded regions indicate the intervals of non-zero contributions to Im �dd(ω) from the processes determined by the first two terms
on the rhs of equation (23). Note that all intervals overlap if ω0 < W − |μ|. Shown is the case ω0 > W , μ < 0.

For non-zero coupling between the electron and the local
vibrational mode at the dot, we have Im �dd(ω) �= 0
everywhere provided that ω0 < W − |μ|. Then, if g �= 0,
the spectral function Add(ω) exhibits no coherent contribution,
and is given, for all ω and γ ∈ [0, 1], by a purely incoherent
spectrum

Add(ω) = − 1

π

Im �dd (ω)

[ω−(�̃−μ)− Re �dd(ω)]2+[Im �dd(ω)]2
.

(28)
On the other hand, if the latter condition is not fulfilled because
−ω0 < −W − μ or W − μ < ω0, then the contributions
to Im �dd(ω) from the phonon processes vanish in certain ω-
intervals (see figure 2). In particular, this happens for ω < 0,
ω ∈ [−(s + 1)ω0,−sω0 − W − μ] and for ω > 0, ω ∈
[W − μ + sω0, (s + 1)ω0] with s � 0, respectively. Poles
in the Green function occur if equation (25) has a real-valued
solution in these intervals. A small width of these peaks can
arise from the third term on the rhs of equation (23) if γ differs
appreciable from unity.

2.3. Determination of γ

In order to fix the variational parameter γ self-consistently, we
minimize the ground-state expectation value E = 〈H̃ 〉 with
respect to γ . We factorize the statistical averages with respect
to phonon and polaron variables, i.e. 〈Cd d†d〉 ≈ 〈Cd〉〈d†d〉
and 〈Ct d†cka〉 ≈ 〈Ct 〉〈d†cka〉 and obtain

E =
∑

k,a

(Eka − μ)〈c†
kacka〉 −

∑

k,a

(〈Ct 〉〈d†cka〉 + 〈C†
t 〉〈c†

ka d〉)

+ (�̃ − μ)〈d†d〉 − 〈Cd〉〈d†d〉 + ω0〈b†b〉. (29)

For the transformed Hamiltonian, 〈b†b〉 as well as 〈Cd〉 is zero
for T → 0 in our second order approach. The remaining
expectation values can be expressed as

〈d†d 〉 =
∫ ∞

−∞
dω′ Add(ω

′)nF (ω′), (30)

〈d†cka〉 = Gcd; ka(τ1, τ2)

∣∣∣
τ1→τ−

2

= − 1

π

∫ ∞

−∞
dω′ nF (ω′) Im Gcd; ka(ω

′), (31)

〈c†
kacka〉 = Gcc; ka(τ1, τ2)

∣∣∣
τ1→τ−

2

= − 1

π

∫ ∞

−∞
dω′ nF (ω′) Im Gcc; ka(ω

′). (32)

Based on the equations of motion (equation (14) for Gcd;ka

and an analogous one for Gcc;ka), the Green functions are
determined to first order as

Gcd;ka(z) ≈ −G(0)

cc;ka(z)〈C†
t 〉Gdd(z), (33)

Gcc;ka(z) ≈ G(0)

cc;ka(z) + 〈C†
t 〉〈Ct 〉[G(0)

cc;ka(z)]2Gdd(z), (34)

which is consistent with the factorization of bosonic and
polaronic averages in (29). Via Gdd , the expressions (33)
and (34) depend on the spectral function Add . We identify the
variational parameter γ from the minimum of E(γ ).

2.4. Two-particle properties: kinetic coefficient

In this section we calculate the current of the system (1)
caused by a small potential difference between the leads. To
this end we deduce the expression for the kinetic coefficient
in terms of the quantum dot spectral function, consistently
with the approximations assumed in the derivation of Add(ω).
In accordance with general linear response theory (Zubarev
1971), the external perturbation Ht = −αF(t) coupled to the
system variable α induces the change 〈α̇〉 of 〈α〉, whose Fourier
transform 〈α̇〉ω is related to the Fourier component F(ω) via
the kinetic coefficient L(ω) as

〈α̇〉ω = L(ω)F(ω). (35)

In particular, linear response theory gives for L = L(ω → 0)

the expression

L = lim
ω→0

[
− 1

ω
Im〈〈α̇|α̇〉〉ω

]
, (36)

where the symbol 〈〈·|·〉〉ω denotes the retarded (commutator)
Green function in frequency representation. In our case, the
quantity of interest is the current between the lead a and the
dot. By the continuity equation, the operator for this current is

Ja = −eṄa, (37)

where Na = ∑
k c†

kacka and

Ṅa = i[H, Na] = −i
1√
N

td
∑

k

(d̃†cka − c†
ka d̃) (38)

with the electron d̃ operators defined in (3). With α = Na

in the above general linear response formula, we express the
kinetic coefficient, obtained from variation of the chemical
potential μa = μ + �μa in the first term of the Hamiltonian,
through the retarded Green function 〈〈Ṅa |Ṅa〉〉.

To obtain this Green function, let us consider the
corresponding Matsubara Green function

G J (τ1, τ
′
1) = −〈Tτ Ṅa(τ1)Ṅa(τ

′
1)〉 (39)

which is related to the two-particle Green function by

G J (τ1, τ
′
1) = Ḡ(τ2, τ

′
2, τ1, τ

′
1)

∣∣∣
τ2=τ−

1 ,τ ′
2=τ ′−

1

, (40)
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where

Ḡ(τ2, τ
′
2; τ1, τ

′
1) = 1

N
t2
d

∑

k,k′
[〈Tτ cka(τ2)ck′a(τ

′
2)d̃

†(τ ′
1)d̃

†(τ1)〉

− 〈Tτ cka(τ2)d̃(τ ′
2)c

†
k′a(τ

′
1)d̃

†(τ1)〉
− 〈Tτ d̃(τ2)ck′a(τ

′
2)d̃

†(τ ′
1)c

†
ka(τ1)〉

+ 〈Tτ d̃(τ2)d̃(τ ′
2)c

†
k′a(τ

′
1)c

†
ka(τ1)〉]. (41)

The mean values of all the time-ordered products on
the rhs of (41) are basically two-particle Green functions
G(2, 2′; 1, 1′) (Rickayzen 1981), which may be approximated
by one-particle Green functions according to

G(2, 2′; 1, 1′) ≈ G(2, 1)G(2′, 1′) − G(2, 1′)G(2′, 1), (42)

if vertex corrections due to phonon-mediated electron–electron
scattering are neglected. In this way, the terms on the rhs
of (41) turn out to be proportional to products of Gcd̃ , Gd̃c,
Gcc, and Gd̃d̃ . Substituting d̃ from (3), averaging over the
oscillator variables and inserting the expression (33) for Gcd

and Gdc = G∗
cd , it becomes obvious that the terms containing

the latter ‘mixed’ Green functions are of higher order in |〈Ct 〉|.
Hence we get as the leading order result

Ḡ(τ2, τ
′
2, τ1, τ

′
1) = 1

N
t2
d

∑

k

[G(0)

cc; ka(τ2, τ
′
1)G̃dd(τ

′
2, τ1)

+ G̃dd(τ2, τ
′
1)G(0)

cc; ka(τ
′
2, τ1)]. (43)

Here we have used the unperturbed Green function G(0)
cc (see

equation (12)) for the electrons in the leads and introduced the
notation G̃dd = Gd̃d̃ .

Inserting (43) into (40) and performing a Fourier
transformation, the latter equation becomes

G J (iωn) = 1

N
t2
d

∑

k

1

β

∑

ων

[G(0)

cc; ka(iων + iωn)G̃dd(iων)

+ G(0)

cc; ka(iων)G̃dd(iων + iωn)], (44)

with bosonic Matsubara frequencies ωn . We now express G̃dd

by the electronic spectral function Ãdd(ω)

G̃dd(iων) =
∫ ∞

−∞
dω′ Ãdd(ω

′)
iων − ω′ , (45)

make use of

G(0)

cc; ka(iων) = 1

iων − (Eka − μ)
, (46)

perform the Matsubara summation over the fermionic
frequencies ων , and obtain

G J (iωn) = 1

N
t2
d

∑

k

{∫ +∞

−∞
dω′ Ãdd(ω

′)

× nF (ω′) − nF (Eka − μ)

iωn + ω′ − (Eka − μ)

+
∫ +∞

−∞
dω′ Ãdd(ω

′)
nF (Eka − μ) − nF (ω′)
iωn − ω′ + (Eka − μ)

}
. (47)

The analytical continuation of (47), iωn → ω̄ = ω + iδ, gives
the retarded Green function

〈〈Ṅa |Ṅa〉〉ω = G J (ω + i0+), (48)

leading to

Im〈〈Ṅa |Ṅa〉〉ω=− π

N
t2
d

∑

k

{ Ãdd(Eka − μ − ω)

× [nF (Eka − μ − ω) − nF (Eka − μ)]
+ Ãdd(Eka − μ + ω)[nF (Eka − μ)

− nF (Eka − μ + ω)]}. (49)

Assuming identical leads a = l, r, this result is of course
independent of a. Finally, according to the definition (36), we
have to perform the limit ω → 0:

L = lim
ω→0

[
− 1

ω
Im〈〈Ṅa |Ṅa〉〉ω

]

= 2π

N
t2
d

∑

k

Ãdd(Ek − μ)(−n′
F (Ek − μ))

= 2π t2
d

∫ W

−W
dξ �(ξ) Ãdd(ξ − μ)(−n′

F (ξ − μ)). (50)

Then, for T → 0, (−n′
F (ξ − μ)) = δ[ξ − μ], so that

L = 2π t2
d �(μ) Ãdd(0). (51)

The general relation between the electronic spectral function
Ãdd(ω) needed here and the polaronic spectral function
Add(ω) determined in section 2.2, was derived in Loos et al
(2006b). Using equation (40) of this work, for ω = 0 and
T → 0, it simply follows that

Ãdd(0) = e−g̃2
Add(0). (52)

Consequently, the kinetic coefficient is determined by the value
of the polaronic spectral function Add(ω) at the lead Fermi
level, multiplied with the renormalization factor e−g̃2

. In
particular, changing g or � leads to a shift of Add(ω) with
respect to the lead Fermi level and therefore changes the value
of Add(0), as will be shown by the numerical calculation in
section 3.

3. Numerical results

While the derivation of the equations in section 2 is completely
general, we consider in the following the case of a single
quantum dot between semi-infinite 1D leads, as sketched in
figure 1. Accordingly, the density of states of the leads is given
by

�(ξ) = 2

πW

√
1−(ξ/W )2 �(1−(ξ/W )2) (53)

with the half-bandwidth W = 2t . We fix t = 1 from here on.
The numerical computation of the Green function Gdd(ω̄),

equation (21), and the corresponding spectral function Add(ω),
equations (22) and (28), is performed by evaluation of
equation (20) for energies ω̄ = ω + iδ slightly above the
real axis. A small choice of δ > 0 avoids problems arising
from the simultaneous treatment of poles and incoherent parts
in the Green function. For our computations, we used δ �
10−3. Alternatively, one might directly evaluate equations (23)
and (24) which are given for real ω, but numerical inaccuracies
in the calculation of the principal value integrals tend to

6
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Figure 3. All results for εp = 0 and μ = 0. Left panel: dot spectral function Add(ω) for � = 0 and several td . Right panel: kinetic coefficient
L as a function of � for several td = 1.

degrade the computation. From the spectral function, we
obtain the kinetic coefficient L using equations (51) and (52).

It is noteworthy that, restricting ourselves to second
order perturbation, the approximations to the Green functions
preserve important sum-rules for the spectral functions,
especially for the integrated weight (Koch 2009). This remains
true for finite δ > 0 in the numerical computation (while the
numerically unfavourable evaluation of equations (23) and (24)
led to the artificial drop of total spectral weight reported in
Loos et al (2006b)).

In the discussion of the numerical results we start with
important limiting cases.

3.1. Non-interacting case

For vanishing EP coupling (εp = 0) the problem reduces to
that of an impurity in a 1D chain. The spectral function is then
obtained exactly by our calculation (left panel in figure 3). For
td = 1, the spectral function of the translationally invariant
1D chain is recovered. For smaller td , the spectral function
develops a pronounced maximum at ω = 0, which evolves
into a δ-peak in the limit td → 0.

For the kinetic coefficient, we observe in figure 3 (right
panel) two effects that will be important later in our discussion
of the interacting case. First, for dot energy � �= 0 scattering
off the dot impurity leads to reduction of L compared to the
case � = 0 with minimal scattering. Consequently, L is
maximal for � = 0 and shrinks monotonically with growing
|�|. Second, a reduction of td leads to a reduction of L.
Moreover the variation with � becomes more pronounced as
electrons become more susceptible to scattering off the dot. In
equations (23) and (24) we see that for smaller hybridization
t2
d �(ξ) the broadening of dot levels due to coupling to the

continuum of lead states is reduced. In the limit td → 0,
the function L = L(�) becomes a δ-function at � = 0 with
weight ∝ t2

d . Note that L is independent of td for � = 0, which
is however a peculiarity of the non-interacting case without
damping of states close to the Fermi energy.

3.2. Small phonon frequency

In the following, we first discuss the results of our approach in
the limits of small and large (section 3.3) phonon frequencies.

For the moment, we fix td = t = 1 and μ = 0 which
corresponds to the half-filled band case for a translational
invariant system with εp = 0 and � = 0.

For small phonon frequency ω0/t = 0.1 (adiabatic
regime), when the phononic timescale is much slower than
the electronic timescale, we expect significant deviations from
the behaviour described by the standard Lang–Firsov approach
consisting of a complete Lang–Firsov transformation and a
subsequent average over the transformed phonon vacuum.
Our approach is able to account for these deviations by the
variational parameter γ . The deviation of γ from unity is some
measure of both adiabatic and weak coupling corrections.

3.2.1. Repulsive dot. In figure 4 we show results for the
case ω0 = 0.1, μ = 0, and a repulsive dot � = 3. Since
the dot is repulsive, the particle density at the dot is small,
n � 0.1, for small EP coupling εp (see panel (b)). At a critical
coupling εc

p � 3.325, EP interaction at the dot overcomes the
repulsive potential, and a transition takes place to a situation
with large n. This transition is accompanied by a jump of
the variational parameter γmin from a small value (<0.02) to
1. This jump can be traced back to the behaviour of the total
energy E as a function of γ : if εp increases, E(γ ) develops
two local minima (see panel (a)). At εp = εc

p, the minimum
at γ = 1 becomes the new global minimum. Evidently,
the sudden change of γ reflects the formation of a strongly
localized polaron at the quantum dot. Thereby the lead–dot
transfer is almost completely suppressed and, in accordance
with this picture, the kinetic coefficient (∝ exp{−g2}) drops
to zero at the transition point. This suppression of transport
is well described by the complete Lang–Firsov transformation
(although this basically is a non-adiabatic approach), mainly
because we enter an extreme strong coupling situation (gc =
5.77). Note that the observation of an extremely sharp polaron
transition in the adiabatic regime for repulsive quantum dots is
in accordance with recent exact diagonalization results (Fehske
et al 2008, Alvermann and Fehske 2008).

We next analyse the dot spectral function Add (see
figures 4(c)–(f)). For εp < εc

p, we have g̃ � γmingc < 0.1154

and, calculating �
(1)
dd within our second order scheme, the first

term in equation (20) is basically proportional to the semi-
elliptical density of states of the leads, while the second term

7
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Figure 4. All results for � = 3, t = td = 1, μ = 0, and ω0 = 0.1. Upper panels: total energy E (a) as a function of γ , for different εp (inset:
minimum of E as a function of εp) and optimal parameter γmin, kinetic coefficient L and particle density n at the dot (b) as a function of εp.
Lower panels: dot spectral function Add(ω) and integrated spectral weight S(ω) for different εp (c)–(f). The insets in panels (c) and (f) show
the imaginary part of the second order self-energy �dd(ω).

(‘phononic contribution’) is insignificant. Then the resulting
spectral function A(1)

dd , which has to be put into the third term
of (20), describes a continuum of states, roughly in between −2
and 2, and a localized dot state at ω � 3.5 (in accordance with
the result obtained for the Fano–Anderson model). Since the
prefactor of the third term, (1 − γmin)gω0 � 0.57 for g � gc,
is rather large this term gives a significant contribution to the
second order self-energy �dd . Thereby the localized peak in
A(1)

dd becomes evident in �dd (see inset of figure 4(c)). As
a result the second order spectral function, Add , exhibits two
sharp peak structures (localized states) above the continuum
of states around ω = 0. If the EP coupling increases these
peaks become more and more separated. In order to analyse
the spectral weight of the different signatures in Add , we have
calculated the integrated spectral function

S(ω) =
∫ ω

−∞
dω′ Add(ω

′). (54)

Figures 4(c) and (d) show that for εp < εc
p the spectral

weight mainly rests in the localized peak structures above the

wide band. Hence the spectral weight of the current-carrying
states at the Fermi energy μ = 0 is reduced, and the kinetic
coefficient L ∝ Add(0) is substantially lowered compared to
the case � = 0. At εp = εc

p, γmin jumps to 1, and the
strong renormalization arising from the complete Lang–Firsov
transformation results in a pronounced peak at negative energy
at about � − εp, which now, however, is the signature of a
quasi-localized polaronic dot state. The polaronic quasiparticle
peak is accompanied by two side bands (roughly of width 2W )
shifted by ±εp, which arise from the Poissonian distribution of
phonons at the dot, with maximum at g2 = εp/ω0 phonons.
States in these band are strongly damped due to the significant
phononic admixture, as is evident in the imaginary part of the
self-energy (see inset figure 4(f)).

3.2.2. The case � = 0. For � < 0 the quantum
dot is attractive. For � = 0 and εp = 0 we have of
course a translational invariant 1D system, where μ = 0
corresponds to the half-filled band case, i.e., n = 0.5. Such

8
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Figure 5. All results for � = 0, t = td = 1, μ = 0, and ω0 = 0.1. Upper panels: total energy E (a) as a function of γ , for different εp (inset:
minimum of E as a function of εp) and optimal parameter γmin, kinetic coefficient L and particle density n at the dot (b) as a function of εp.
Lower panels: dot spectral function Add(ω) and integrated spectral weight S(ω) for different εp (c)–(f). The inset in panel (f) gives the
imaginary part of the dot self-energy �dd(ω).

a ‘neutral’ quantum dot becomes attractive for arbitrarily weak
EP interaction. This is because the ‘effective’ dot level is given
by �̃ = � − εpγmin(2 − γmin).

Consequently, in figure 5(b) the particle density at the dot
is larger than 0.5 for all εp, and the dot spectral function has
no pole at positive energies. At small EP coupling the spectral
function is similar to that of a 1D tight-binding model. The
weak EP interaction causes the spiky signatures separated by
ω0 from the upper and lower band edges (see figure 5(c)). In
contrast to a repulsive dot, for which our methods correctly
describes the transition from unbound to localized polaronic
dot states, a sharp polaron transition cannot occur for a dot
level � � 0. Nevertheless, we observe in figure 5 a transition
signalled by the jump of γmin to 1 with corresponding increase
of n, decrease of L, and formation of a pronounced peak in
Add(ω) at negative energies. The reason is again the change of
the global minimum of E(γ ), which has two local minima for
larger εp. Since for � = 0 the interaction need not overcome
a repulsive dot potential, the transition takes places at smaller

εc
p ≈ 1.125. Therefore, and in contrast to the previous case, no

isolated quasiparticle peak in Add(ω) emerges at the transition,
and the change of the spectral function is less dramatic. Above
the transition the qualitative behaviour of the imaginary part of
the self-energy (see inset of 5(f)) is the same as for the repulsive
quantum dot (cf inset of 4(f)). Since εp is smaller now, the
maxima of the phonon contributions to �dd are less separated
than in figure 4(f).

In our approach the transition results from a jump in γmin.
As before, this might indicate the formation of a localized
polaronic dot state. But we know from the various variational
approaches to the polaron problem that such jumps often arise
as artefacts of the variational ansatz (Fehske et al 1994). For
the Holstein polaron with EP interaction at each lattice site, no
phase transition exists (Gerlach and Löwen 1991). Instead, a
crossover between an almost free electron and a heavy polaron
takes place. The crossover can however be very rapid for
small phonon frequency (Alvermann et al 2008). But we
also know that, in contrast to the Holstein polaron problem,
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Figure 6. All results for � = 3, t = td = 1, μ = 0 and ω0 = 10. Upper panels: total energy E (a) as a function of γ , for different εp (inset:
minimum of E as a function of εp) and optimal parameter γmin, kinetic coefficient L and particle density n at the dot (b) as a function of εp.
Lower panels: dot spectral function Add(ω) and integrated spectral weight S(ω) for different εp (c)–(f). The inset in panel (f) gives the
imaginary part of the dot self-energy �dd(ω).

for a single electron at a vibrating quantum dot a true phase
transition, from n = 0 to finite n > 0, takes place (Mishchenko
et al 2009, Alvermann and Fehske 2008, Fehske et al 2008).
This phase transition becomes more pronounced for small ω0.
The behaviour found here therefore does not contradict the
essential physical mechanism in our situation. In principle, our
approach mimics the sharp adiabatic polaron transition by the
change of the parameter γ of the (non-adiabatic) Lang–Firsov
transformation. While the precise nature of the transition is
only poorly described by this approximation, we still believe
that the transition—or rapid crossover—itself is characteristic
for the quantum dot at small ω0.

3.3. Large phonon frequency

For large phonon frequency ω0 = 10, in the anti-adiabatic
regime, phonons adjust instantaneously to the electrons. Now
our non-adiabatic variational Lang–Firsov approach perfectly
matches the situation. We will see that the transitions found
in the previous (adiabatic) cases will be replaced by smooth

changes of the physical observables. We then note that the
results obtained can be understood easily starting from the case
without EP interaction.

3.3.1. Repulsive dot. The fact that for large phonon frequency
no transitions occur is most clearly seen for a repulsive barrier
in figure 6: all quantities depend smoothly on εp. The total
energy E(γ ) has a unique minimum for all εp, which is the
reason why no transition occurs. Note that γ grows from
≈0.75 to 1, as εp is increased. For large ω0 and εp, the
Lang–Firsov transformation implements the correct physical
mechanisms. Nevertheless, at weak EP coupling, the deviation
γ < 1 indicates the importance of corrections to the complete
Lang–Firsov transformation.

The spectral functions in figure 6 show that, although no
transition occurs, we start with a peak in Add(ω) at positive
energies for small εp (<�), to end up with a polaronic
quasiparticle signature at very strong EP coupling. At εp = 2,
the peak enters the band of lead states from above, leading
to an asymmetric deformation of the semi-elliptic band (see
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panel (c)). A second absorption feature is separated by the
phonon frequency, but carries almost no spectral weight. With
increasing EP interaction, the effective dot level is lowered
until a ‘neutral’ dot evolves at about �̃ = �−εp = 0, as can be
seen from the 1D tight-binding model like absorption in panel
(d) (note that we here are in the weak EP interaction regime
since g2 = 0.3, which is the relevant coupling parameter in
the anti-adiabatic region, is small). At large EP coupling,
the polaronic peak appears at �̃ < 0 and acquires a spectral
weight of nearly unity (see panel (f) for εp = 8). Due
to the large phonon frequency ω0 > W , the phononic side
bands do not overlap in this case (in contrast to figure 4), and
the spectral function and self-energy show the typical multi-
band structure known from the anti-adiabatic Holstein polaron.
Most importantly, we now find intervals where Im �dd = 0
between the non-overlapping phonon (side) bands. If the
polaronic peak is located within such an intermediate range
the quasiparticle cannot decay by (multi-) phonon absorption
or emission processes (see panel (f)). This means the polaronic
dot state acquires in principle an infinite lifetime (in the limit
of very large couplings and phonon frequency). Naturally, as
ω0 → ∞, we recover the behaviour of the impurity model,
where a true bound state occurs (Alvermann and Fehske 2008,
Mishchenko et al 2009).

Thus, for large phonon frequency, or whenever γ is
close to unity, we can understand most properties starting
from the non-interacting case, if we take the interaction
into account by renormalization of the appropriate physical
parameters. Inspection of equations (51) and (52) shows that
one central effect of interaction on the kinetic coefficient is the
renormalization of td to an effective dot–lead hopping td e−g̃2/2.
The second central effect is the change in the dot density of
states, which is to a large extent caused by lowering of the
effective dot energy (below the value � without interaction)
due to deformation of the quantum dot in the presence of
electrons.

This simple picture is valid only in the limit γ = 1,
when the dot energy is effectively lowered by −εp, such that
�̃ = � − εp in equation (6), and the dot–lead hopping is
effectively reduced by e−g2/2, such that Ãdd(0) = e−g2

Add(0)

in equation (52). The kinetic coefficient L then has properties
analogous to the non-interacting case, with the appropriately
renormalized parameters. We discussed above (section 3.1)
the consequences for L resulting from a change of td or �.
For the curve shown in figure 6, it turns out that it can be
indeed reproduced from the expression for L in the non-
interacting case, evaluated with an effective dot energy � − εp

and effective dot–lead hopping t̃d = tde−g2/2 replacing �, td .
In particular, L is maximal for εp = � (cf figure 3). Note
that away from the limit of large phonon frequency, whenever
γ � 1, different behaviour is found. Also the shape of the
dot spectral function, and especially the value of Add(0), is
modified in addition to simple renormalization. Of course,
and similar as for the polaron problem, the retardation of the
EP interaction manifests itself most prominently at small-to-
intermediate phonon frequency.

3.3.2. The case � = 0. The behaviour for the attractive dot
is similar to the previous case (see figure 7). Here, of course,
a pronounced peak in Add(ω) occurs at negative energies for
all εp. Once again, all features can be understood starting from
the non-interacting case with appropriate renormalization, as
explained above. Since �̃ � 0 for all εp � 0, the kinetic
coefficient has no maximum as a function of εp.

The simple picture given above takes into account only the
renormalization of td and �. It is important to keep in mind
that both effects lead to a reduction of L. As a consequence,
the change of the kinetic coefficient is not simply given by an
exponential behaviour ∝e−g2

(compare L to the dashed curve
in figure 7). In the present case, the coupling strength is small
in terms of the average number of phonons g2 = εp/ω0, for
which g2 < 1, but large in terms of the shift of the dot energy
εp, which is of the order of the bandwidth W . Here, the
reduction of L is mainly caused by this large shift.

The opposite situation can occur for small phonon
frequency, when g2 is large already for small εp. Then,
however, the renormalization of td is not adequately described
by an exponential factor e−g2/2. In the limit ω0 → 0 of small
phonon frequency, g2 = εp/ω0 → ∞ for any εp > 0.
If the exponential dependence ∝e−g2

persisted, that would
imply zero current even for tiny εp, which is unphysical. A
calculation with fixed γ = 1 therefore overestimates the
reduction of L for intermediate-to-small phonon frequencies.
We discussed in section 3.2 how, in our treatment, variation of
the parameter γ accounts partially for this deviation, leading to
γ � 1 away from the anti-adiabatic strong coupling limit.

3.4. Intermediate phonon frequency

For intermediate phonon frequencies the qualitative behaviour
depends crucially on the value of γ , even if no transition
occurs. From our previous discussion we know that both a
positive � or a small ω0 favour a rapid, or even discontinuous,
transition. For ω0 = 1, we show in figure 8 (upper row)
how a smooth crossover evolves into a sudden transition with
increasing �. In contrast to the case of small phonon frequency
ω0 = 0.1, the kinetic coefficient L is a smooth function of
εp for � = 0. A transition in L occurs only for larger �.
Increasing the phonon frequency to ω0 = 3 (lower row, panel
(c)) then leads again to a smooth crossover even at � = 3.

Changing the phonon frequency, we should ask to which
extent the renormalization scenario given for the anti-adiabatic
case remains applicable. For ω0 = 3 (panel (c)) we observe
that L differs from the value obtained, as in section 3.3, from
the non-interacting case for renormalized �, td (in particular
the maximum of L occurs for εp > �), but although � = 3,
the two curves match rather well. The situation changes for
ω0 = 1 (panel (d)), where strong deviations occur already
for � = 0 (note that the dashed curve for � = 2 even
misses the increase of L at smaller εp). Evidently, the simple
renormalization scenario fails, as we expected. We can achieve
much better agreement if we perform the same calculation but
incorporate the parameter γ taken from the upper left panel in
figure 8 (the dashed curves would correspond to fixed γ = 1).
Small deviations remain for � = 2, since the full calculation
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Figure 7. All results for � = 0, t = td = 1, μ = 0 and ω0 = 10. Upper panels: total energy E (a) as a function of γ , for different εp (inset:
minimum of E as a function of εp) and optimal parameter γmin, kinetic coefficient L and particle density n at the dot (b) as a function of εp.
Lower panels: dot spectral function Add(ω) and integrated spectral weight S(ω) for different εp (c)–(f). The inset in panel (f) gives the
imaginary part of the dot self-energy �dd(ω).

includes damping of states, indicated by a finite imaginary part
of the self-energy, which is not captured by the change of γ .

It is now evident that the essential feature of our
calculation is the self-consistent determination of the
parameter γ . Once we know its value, we may get a
good approximation already with a modified renormalization
argument which was originally constructed for the anti-
adiabatic limit. If, in contrast, we fix γ = 1 we will miss
the physics away from the limit of large phonon frequencies.
The restricted use of the Lang–Firsov transformation for
intermediate-to-small phonon frequencies is well known in the
Holstein polaron literature. It is important to realize that this
restriction applies also to the situation of a vibrating quantum
dot.

3.5. Variation of the chemical potential

So far all results were given for chemical potential μ = 0. A
change of the chemical potential affects the kinetic coefficient

in two ways. First, since in equation (51) the lead density of
states �(ξ) and the dot spectral function Add(ω) are evaluated
at the chemical potential, a change of μ results in a change
of L. Second, phonon emission/absorption is possible only if
free states are accessible after an electron changed its energy
by ±sω0. Otherwise, EP interaction is suppressed by Pauli
blocking. Therefore, the shape of Add(ω) itself does depend
on μ in a true many-particle calculation as performed here.
Significant changes occur whenever ±ω0 crosses the band
edges (at about ±W − μ at weak coupling).

This effect is evident in the spectral function Add(ω) in
figure 9. At weak coupling (εp = 0.5) the shape of Add(ω)

is similar for half-filling (μ = 0) and small particle density
(μ = −1.9), but small differences at the lower band edge
are a first indication of the different behaviour at stronger
coupling. There, for εp = 3.1, the spectrum for μ = 0
is completely incoherent, with finite Im �dd(ω). Around
ω = 0 we observe a valley in Im �dd(ω) of width 2ω0,
which results from Pauli blocking of states in the vicinity of
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Figure 8. All results for t = td = 1, μ = 0. Upper row: for ω0 = 1, optimal γmin (a) and kinetic coefficient L (b) for various � as indicated.
Lower row, panel (c): for � = 3 and ω0 = 3, optimal parameter γmin, kinetic coefficient L , and particle density n at the dot, as a function of
εp. The dashed green curve shows L calculated for the non-interacting case with renormalized parameters (see text). Lower row, panel (d): for
ω0 = 1 and two different �, kinetic coefficient L as a function of εp. The dashed curves show L calculated for the non-interacting case with
renormalized parameters, but fixed γ = 1. The dot–dashed curves have been obtained taking the parameter γ from the upper left panel (see
text).

Figure 9. All results for � = 0, t = td = 1 and ω0 = 1. Comparison of Add(ω), S(ω), and the self-energy �dd(ω) (insets) for μ = 0 (left
column, panels (a) and (c)) and μ = −1.9 (right column, panels (b) and (d)), for weak coupling εp = 0.5 (upper row, panels (a) and (b)) and
strong coupling εp = 3.1 (lower row, panels (c) and (d)).

13
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Figure 10. All results for � = 0, t = td = 1 and ω0 = 1. Kinetic coefficient L (panel (a)) and dot density of states n (panel (b)) as a function
of εp , for varying chemical potential μ.

Figure 11. All results for t = 1, μ = 0 and ω0 = 1. Upper row: kinetic coefficient L as a function of λ = εp/2td at � = 0 (panel (a)) and as
a function of εp at � = 3 (panel (b)) for different td . In panel (a) L is compared to the renormalized non-interacting case (dashed lines, see
text). The inset in panel (a) gives the corresponding optimal parameter γmin. Lower row: dot spectral function Add(ω) and integrated spectral
weight S(ω) at � = 3, td = 0.1 for εp = 2 (c), εp = 3 (d), and εp = 4 (inset, panel (d)).

the Fermi energy (cf the discussion in Loos et al 2006b).
Note that Im �dd(ω) �= 0 here even at the Fermi energy,
since the self-energy contains the contribution from dot–lead
transfer. For μ = −1.9, states below the phonon emission
threshold, located ω0 above the lower band edge, cannot emit a
phonon (phonon absorption is suppressed at zero temperature).
Electrons in these states are undamped, with infinite lifetime
corresponding to Im �dd(ω) = 0.

The interpretation of the behaviour of the kinetic
coefficient L (see figure 10) relies on these two mechanisms.
First, if μ decreases, the change in the density of states should
reduce the value of L (compare the curves for μ = 0 (solid
line) and μ = −1.9 (dot–dashed line)). Also, the dot density
of states n decreases. We note that for the non-interacting

(εp = 0) 1D case the changes in �(ξ) and Add(ω) cancel
by chance, and L is independent of μ. However, at stronger
coupling, the different influence of Pauli blocking reverses this
behaviour, and L is larger for smaller μ. This explains why the
curve for μ = −1.9 crosses the curve for μ = 0 in figure 10.

3.6. Small dot–lead hopping (tunnel contacts)

We have so far discussed the importance of the phonon
frequency only in the situation t = td . On physical grounds
it is the ratio ω0/td , instead of ω0/t , which should distinguish
the adiabatic from the anti-adiabatic regime.

In figure 11(a) we show, for intermediate phonon
frequency ω0 = 1 and � = 0, the change of behaviour

14
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Figure 12. All results for t = 1, � = 0, td = 0.5, μ = 0, and ω0 = 0.1. Panel (a) E as a function of γ for different εp (inset: minimum of E
as a function of εp). Panel (b) L , γmin, and n as functions of εp. For εc

p ≈ 0.46 a crossover takes place. Panels (c) and (d) Spectral functions
Add(ω) and integrated spectral weight S(ω) for coupling strengths below and above εc

p.

as td is reduced by one order of magnitude. The kinetic
coefficient L decreases with td (see upper panels). Note that
if we reduce td at fixed λ = εp/(2td) in figure 11(a), we de
facto reduce the coupling εp, but nevertheless L decreases.
This implies that the effect of smaller td on L dominates
over the possible increase of L for smaller coupling. We
compare L again with the value obtained in the renormalization
scenario, with a calculation as in the non-interacting case but
with renormalized parameters �, td (see dashed lines). For
td = t = 1, and ω0/td = 1, both curves disagree. We
already discussed above that this is a consequence of adiabatic
corrections, which become important at intermediate-to-small
phonon frequency. However, if we reduce td to 0.1 while
keeping ω0 = 1 fixed, and thereby increase ω0/td to 10, both
curves match. Apparently, we enter the anti-adiabatic regime
by sufficient reduction of td . This indicates that indeed ω0/td
is the relevant ratio to distinguish the adiabatic from the anti-
adiabatic regime. For ω0/td � 1, and independent of ω0/t , the
system has physical properties that can be described within the
simple renormalization scenario associated with the complete
Lang–Firsov transformation.

In figure 11(b) we make the same observation for � = 3,
still with ω0 = 1. For td � 0.5 the kinetic coefficient L shows
the transition familiar to us from the previous discussions of
intermediate or small phonon frequencies, which is in contrast
to the physics in the anti-adiabatic regime. For td � 1 a sharp
peak occurs in L for εp = �. This is of course the behaviour
expected for the anti-adiabatic regime, which is reminiscent of
the non-interacting case for small td with a peak of L at � = 0
(cf figure 3).

The lower panels of figure 11 show the spectral function of
the repulsive quantum dot at small dot–lead hopping td = 0.1
for �̃ > 0 (panel (c)), �̃ � 0 (panel (d)), and �̃ < 0 (inset
panel (d)). Below the ‘critical’ EP coupling we have γmin �
0.2 and obtain a double-peak structure of Add because both
the first and the third term in equation (20) give significant
contributions. At εp = 3, the prefactor of the third term
vanishes (γmin = 1), and a single-peak structure develops. This
polaronic peak is located at the Fermi energy and contains all
the spectral weight. Therefore L is enlarged more than three
orders of magnitude. Increasing εp further the polaronic signal
is narrowed and shifted away from the Fermi level. As a result
L decreases off by five orders of magnitude.

Figure 12 gives more results for the experimentally
relevant wide-band case, t > td , now in the adiabatic regime.
Owing to the values of the parameters μ and ω0, we have
a situation where Im �dd(ω) �= 0 in the whole relevant ω

region and the spectral function is given by equation (28).
According to the formula for Im �dd(ω), equation (23), the
cases εp = 0.1 and εp � εc

p (panel (c)) show the predominance
of the first term. The shift of spectral weight to negative ω

becomes apparent for εp = 0.45, indicating the influence of
the EP interaction. The spectral functions for εp � εc

p and
εp = 1 (panel (d)) make evident the suppression of the first-
term contribution and the multi-phonon structure according to
the second term in equation (23). The maxima of the spectral
functions are situated near ω = �̃. Then again the sudden
decrease of L at εc

p may be understood from equation (52) by
the sudden change of Add(0) at εc

p.
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Figure 13. All results for � = 0, t = 1, td = 0.5 and ω0 = 0.1. Kinetic coefficient L (a) and particle density on the dot n (b) as functions of
εp for varying chemical potential μ.

Figure 14. Dot spectral function for � = 0, t = 1, td = 0.5, ω0 = 0.1, μ = −1.9 and varying εp.

Figure 13, for ω0 = 0.1, shows the kinetic coefficient L
and the particle density on the dot, n, for μ < 0, whereas
the dot spectral function is given in figure 14 for μ = −1.9
only. Again, we observe an adiabatic transition in L and n.
As μ decreases, the critical EP coupling strength moves to
larger values, simply because the effective dot level has to
be lowered by a larger εp to roughly match the Fermi level.
For εp < εc

p (panel (a)), the spectrum lies in the interval
[−W − μ, W − μ] � [−0.1, 3.9], where the first term of
equation (23) contributes, with the apparent influence of EP
coupling. For εp > εc

p (panel (b)), the spectral weight is
shifted to a pronounced peak below the Fermi level. Because
ω0 � W − |μ|, we find no intervals where Im �dd(ω) = 0.

Finally, we monitor for the wide-band case the transition
induced by an increasing dot level � (see figure 15 at small
(ω0 = 0.1, left-hand column) and intermediate-to-large (ω0 =
1, right-hand column) phonon frequencies). In both cases
Im �dd (ω) �= 0 for all ω. As discussed above, for � �= 0,
the maximum in Add occurs near ω = �̃ = � − εpγ (2 − γ ).
In particular, for � = −2 (panel (d)) the spectrum consists
practically only of one peak at about � − εp with relatively
small linewidth. Hence only a weakly damped localized state
of the current carrier on the dot exists, having an energy
lowering equal to εp. The transition from a localized to a
delocalized carrier is accompanied by the shift of spectral
weight to larger frequencies and the influence of the first
term in equation (23) is recovered. The change of Add(0)

with � leads to the maximum observed for L in panel (b).

Because the optimal variational parameter γmin is a continuous
function of � with a wide range of values (panel (b)), the
effective renormalization of t̃d and �̃ depends on the dot level
� itself. In contrast to the result for a complete Lang–Firsov
transformation with fixed γ = 1 (cf figure 5 of Galperin et al
2006), we therefore find a shift of the maximum of L(�) by
less than εp and L decreases asymmetrically away from this
point. However, in accordance with Galperin et al (2006), we
find no phonon side band in L(�).

4. Summary

In this work, we have presented an approach to transport
through a vibrating molecular quantum dot, which extends
a previously developed description for the many-polaron
problem. The virtue of this approach lies in an incomplete
variational Lang–Firsov transformation in which the degree of
the transformation is determined self-consistently. In this way,
our approach can describe polaronic effects on transport away
from the strong coupling anti-adiabatic regime. Descriptions
based on a full Lang–Firsov transformed Hamiltonian are, in
contrast, restricted to this limit.

With our approach we studied the molecular quantum dot
in different regimes, from weak to strong coupling and small to
large phonon frequency. The dot spectral functions, calculated
within a second order equation of motion approach, allow for
a detailed analysis of the dynamical properties of the quantum
dot in dependence of the model parameters. Our results show
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Figure 15. Left column: L , γmin, and n as functions of � for t = 1, td = 0.5, ω0 = 0.1, εp = 0.4 and μ = 0 (panel (a)). At �c ≈ −0.24 a
crossover takes place. Spectral functions for � below (panel (c)) and above �c (panel (e)). Right column: L , γmin and n as functions of � for
td = 0.5, ω0 = 1, εp = 1 and μ = 0 (panel (b)). Panels (d) and (f) give the spectral functions Add(ω) and integrated spectral weight S(ω) for
various �.

that the use of an incomplete Lang–Firsov transformation is
essential to capture the physics for all but very large phonon
frequencies: in many cases, the optimal parameter γ differs
significantly from unity.

The present study is open for extension in several
important directions. On the one hand, extension to finite
voltage bias is necessary. Since our approach is developed
in the Green function formalism, this extension, e.g. using
Keldysh techniques, is possible and will be addressed next.
On the other hand, our approach correctly captures the physics
for a large range of possible parameters, but even with
an incomplete Lang–Firsov transformation one encounters
problems at very small phonon frequency.

In conclusion, the presented work carries over important
concepts and ideas well known from polaron physics,
especially the crucial modification of the Lang–Firsov
transformation, to the study of vibrating molecular quantum
dots.
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Nuñez Regueiro M D, Cornaglia P S, Usaj G and Balseiro C A 2007

Phys. Rev. B 76 075425
Park H 2007 Nat. Mater. 6 330
Park J, Pasupathy A N, Goldsmith J L, Chang C, Yaish Y, Petta J R,

Rinkoski M, Sethna J P, Abruña H D A, McEuen P L and
Ralph D C 2002 Nature 417 722

Reichert J, Ochs R, Beckmann D, Weber H B, Mayor M and
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